Accurate sequence-based prediction of catalytic residues
نویسندگان
چکیده
MOTIVATION Prediction of catalytic residues provides useful information for the research on function of enzymes. Most of the existing prediction methods are based on structural information, which limits their use. We propose a sequence-based catalytic residue predictor that provides predictions with quality comparable to modern structure-based methods and that exceeds quality of state-of-the-art sequence-based methods. RESULTS Our method (CRpred) uses sequence-based features and the sequence-derived PSI-BLAST profile. We used feature selection to reduce the dimensionality of the input (and explain the input) to support vector machine (SVM) classifier that provides predictions. Tests on eight datasets and side-by-side comparison with six modern structure- and sequence-based predictors show that CRpred provides predictions with quality comparable to current structure-based methods and better than sequence-based methods. The proposed method obtains 15-19% precision and 48-58% TP (true positive) rate, depending on the dataset used. CRpred also provides confidence values that allow selecting a subset of predictions with higher precision. The improved quality is due to newly designed features and careful parameterization of the SVM. The features incorporate amino acids characterized by the highest and the lowest propensities to constitute catalytic residues, Gly that provides flexibility for catalytic sites and sequence motifs characteristic to certain catalytic reactions. Our features indicate that catalytic residues are on average more conserved when compared with the general population of residues and that highly conserved amino acids characterized by high catalytic propensity are likely to form catalytic sites. We also show that local (with respect to the sequence) hydrophobicity contributes towards the prediction.
منابع مشابه
Accurate Prediction of Protein Catalytic Residues by Side Chain Orientation and Residue Contact Density
Prediction of protein catalytic residues provides useful information for the studies of protein functions. Most of the existing methods combine both structure and sequence information but heavily rely on sequence conservation from multiple sequence alignments. The contribution of structure information is usually less than that of sequence conservation in existing methods. We found a novel struc...
متن کاملEXIA2: Web Server of Accurate and Rapid Protein Catalytic Residue Prediction
We propose a method (EXIA2) of catalytic residue prediction based on protein structure without needing homology information. The method is based on the special side chain orientation of catalytic residues. We found that the side chain of catalytic residues usually points to the center of the catalytic site. The special orientation is usually observed in catalytic residues but not in noncatalyti...
متن کاملL1pred: A Sequence-Based Prediction Tool for Catalytic Residues in Enzymes with the L1-logreg Classifier
To understand enzyme functions, identifying the catalytic residues is a usual first step. Moreover, knowledge about catalytic residues is also useful for protein engineering and drug-design. However, to experimentally identify catalytic residues remains challenging for reasons of time and cost. Therefore, computational methods have been explored to predict catalytic residues. Here, we developed...
متن کاملEvaluation of features for catalytic residue prediction in novel folds.
Structural genomics projects are determining the three-dimensional structure of proteins without full characterization of their function. A critical part of the annotation process involves appropriate knowledge representation and prediction of functionally important residue environments. We have developed a method to extract features from sequence, sequence alignments, three-dimensional structu...
متن کاملPINGU: PredIction of eNzyme catalytic residues usinG seqUence information
Identification of catalytic residues can help unveil interesting attributes of enzyme function for various therapeutic and industrial applications. Based on their biochemical roles, the number of catalytic residues and sequence lengths of enzymes vary. This article describes a prediction approach (PINGU) for such a scenario. It uses models trained using physicochemical properties and evolutiona...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 24 20 شماره
صفحات -
تاریخ انتشار 2008